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Human-Aware Robotic Assistant for Collaborative
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with Planning in Time
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Abstract—Introducing mobile robots into the collaborative
assembly process poses unique challenges for ensuring efficient
and safe human-robot interaction. Current human-robot work
cells require the robot to cease operating completely whenever a
human enters a shared region of the given cell, and the robots
do not explicitly model or adapt to the behavior of the human.
In this work, we present a human-aware robotic system with
single-axis mobility that incorporates both predictions of human
motion and planning in time to execute efficient and safe motions
during automotive final assembly. We evaluate our system in
simulation against three alternative methods, including a baseline
approach emulating the behavior of standard safety systems in
factories today. We also assess the system within a factory test
environment. Through both live demonstration and results from
simulated experiments, we show that our approach produces
statistically significant improvements in quantitative measures of
safety and fluency of interaction.

Index Terms—Physical Human-Robot Interaction, Collabora-
tive Robots, Assembly

I. INTRODUCTION

ROBOTS that work in proximity to or collaboratively
with people have been a primary focus for robotics

and automation in recent years [1]. Indeed, several robots
that can safely operate alongside human collaborators have
been recently developed and fielded for assembly applications
[2]. However, despite this promising trend, the majority of
collaborative robots within the manufacturing domain have
a small operating region (e.g., the operating range for the
UR10 is 1300 mm) and remain stationary. These limitations
adversely impact the overall equipment effectiveness [3].

Mobile robots have a larger operating region than stationary
robots, allowing for higher effectiveness and greater flexibility
in the design of manufacturing processes. Here, we focus on
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Fig. 1: The human-aware robotic system delivering parts to
a human associate during an engine assembly task, while
another human performing an unrelated task intercepts its path
between the depot and the workstation.

the application of collaborative robots for delivering parts to
human associates during automotive engine assembly. Such a
system would need to fetch parts from depots and efficiently
deliver them to humans at their workstations, while ensuring
safe interactions (see ISO 10218/2 [4]).

We utilize a human-safe robot arm mounted on a linear
axis unit; both the arm and unit are certified for and used
in industrial applications. Prior work indicates the theoret-
ical potential for a human-aware motion planner to yield
improvements to both the safety and efficiency of human-
robot interaction (HRI) [5]. This paper reports on CobotSAM,
a human-aware robotic system that realizes this benefit. The
system employs human motion prediction in conjunction with
a complete, time-optimal path planner to execute motions
in the shared environment (Fig. 1). The integrated system
was successfully fielded in a BMW test environment that
involved live interactions with human associates. The system
was evaluated against three alternative methods, including a
baseline approach that emulates the behavior of standard robot
safety systems utilized in factories today. Through results from
both live demonstrations and simulated experiments, we show
that our integrated prediction and planning approach results in
fewer safety-related stops, shorter task completion times, and
improved measures of fluency of interaction.

For human motion prediction, collaboration with a mobile
robot in the manufacturing domain requires accurate predic-
tions over both short and long time horizons. For example,
the robot must know where a person will be in the short term
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in order to maintain effective collision avoidance, but also
must know the human’s long-term predicted path in order to
plan efficient motion toward its own goal. To accommodate
this requirement, we employ the Multiple-Predictor System
(MPS) [6], a data-driven approach that synthesizes a high-
performance predictor using a library of component prediction
methods, each with a unique performance profile that varies
as a function of look-ahead time. The MPS enables automatic
selection of the most accurate prediction approaches over both
short and long time horizons.

The robot also requires a method for adapting its own
behavior based on the knowledge of human behavior provided
by the MPS – specifically, a planner that can leverage these
predictions to generate motion for CobotSAM’s linear axis
unit. For example, if the robot receives predictions indicating
that a human will cross in front of it, the robot can plan
to either yield the way to the human or continue moving
depending upon when the cross is predicted to occur. However,
the system has limited freedom to perform such adaptations
due to its single-axis mobility. This necessitates an approach
that can generate plans quickly while reasoning about time
and predictions. Schedule considerations drive the production
environment and it is also crucial that the online planning
system incorporates an explicit representation of time (i.e.
performs planning in time). Thus, we use the Safe-Interval
Path Planner (SIPP), a time-optimal search algorithm for
planning in time, to plan robot trajectories [7].

SIPP generates plans under the assumption that the available
predictions are fixed and accurate; however, in practice, pre-
dictions evolve as available information changes during task
execution. The physical position of the robot will also change
during the time-critical planning process. Hence, along with
SIPP, we incorporate an algorithm to interleave prediction and
planning with the execution of robot motion.

The key contributions of this paper are:
1) The first robot system to employ complete, time-optimal

path planning in time in conjunction with a multiple
predictor system for human motion. The integrated system
interleaves prediction, planning, and execution to produce
anticipatory robot behaviors that are derived automatically
as the robot interacts with a live human.

2) The first physical demonstration of such a prediction,
planning, and execution system using an arm and linear
axis unit, both certified for and used in industrial settings.

3) Evaluation in simulation to assess improvements to safety
and efficiency, compared to state-of-the art approaches
applicable to factory environments. Results demonstrated
reductions in safety-related stops, decreases in task times,
and improvements in measures of fluency of interaction.

The application considered in this paper involves navigation
along a linear axis within a factory environment; however,
the algorithms provided herein are also applicable to general
human-robot co-navigation.

II. TASK DESCRIPTION

During the final assembly of automotive engines, human
workers must move within their environment to fetch the
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Fig. 2: Schematic of a prototypical factory environment for
deploying our robotic system. The collaborative robot moves
along the linear axis unit to assist humans at their workstations.
The robot’s operating region (orange) is shared with human
workers. The set of potential human motions is represented by
green dotted lines.

parts required for the assembly process. The use of mobile
collaborative robots to perform this task offers an alternative
that allows human workers to focus on the dexterous, value-
added work of engine assembly, yielding significant time and
cost savings [8]. Mobility achieved through translation on
a linear axis [9] provides a near term opportunity for new
forms of human-robot collaboration using existing hardware
and control solutions, which come with safety guarantees that
make them readily suitable for a production environment.

Delivery of assembly parts: Figure 2 presents a schematic
of a prototypical factory environment in which the robot
is deployed. The primary task of the system is to transit
between workstations and part depots to deliver parts to
human associates. These humans remain at their workstations
throughout the task and use the parts delivered by the robot
to assemble the engine. As engine assembly is a repetitive
task, the parts and the order in which they are to be delivered
remains fixed – i.e., the robot’s task plan (or, equivalently, the
sequence of goal locations) is pre-specified.

Sharing environment with humans: The set of possible hu-
man motions within the human-robot shared region is depicted
in Fig. 2. The humans moving within this region differ from
those at the workstations, and include workers responsible for
stocking part depots and cleaning. While the sequence of robot
goal locations is predetermined, it requires algorithms to plan
and execute its trajectory to each goal. Humans within the
shared environment may exhibit arbitrary motions (from the
known set of possible motions) at any time during the robot’s
operation. Thus, we provide a system that employs algorithms
for human motion prediction and trajectory planning in time
for CobotSAM’s base to achieve safe and efficient execution
of the part delivery task.

III. RELATED WORK

A. Collaborative Robots in Automotive Manufacturing

In recent years, multiple robotic systems have been re-
searched and developed for operation among humans in au-
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tomotive final assembly [10], [11]. These include stationary
robots designed to provide ergonomic benefits to human
associates during assembly tasks, such as cockpit installation
[12], rear axle assembly [13], or door sealant application
[2]. A few robots with varied degree of mobility have also
been researched and developed [14]–[17], including “Robot
Workmate” a system with single-axis mobility for inspection
tasks [18]. Similarly, our system achieves the desired degree
of mobility using a linear axis unit. However, in contrast to
existing mobile collaborative robots, ours incorporates human
motion prediction and path planning in time, enabling safe and
anticipatory behavior within a shared environment.

B. Human Motion Prediction
Tasks executed within the manufacturing context have an

inherent structure, with people moving between key locations
within their environment to achieve specific goals. One com-
mon approach to predicting human motion in such structured
environments centers around inferring the actions or goals of
humans in order to predict their future motion. This body of
work can be split into two main groups, based on the length
of the prediction time horizon.

The first subset focuses on prediction over short time hori-
zons, often in the context of reaching motions. For instance,
researchers have developed techniques utilizing inverse opti-
mal control [19] and Bayesian classification [20] to generate
motion predictors using labeled data of arm motion. To avoid
the need for manually labeled motions, Luo et al. presented
an unsupervised approach to predicting reaching motions using
Gaussian mixture models of the palm and arm [21]. Besides
considering only the human motion, other works also reason
about environmental constraints and object affordances to
predict human motion [22].

The second subset of work related to goal-based human
motion prediction deals with predictions over longer time
horizons, and is typically focused on ambulatory motion (e.g.,
[23]). One such approach leverages the assumption that people
move in an efficient manner while navigating an environment
in order to model human motions using maximum entropy
inverse optimal control [24]. Environmental constraints and
biases can also be leveraged to predict walking motion, as
shown in work by Karasev et al. [25]. Finally, recent work by
Chen et al. improved the prediction of pedestrian motion by
addressing issues arising from the modeling of human motions
with Gaussian process regression by developing a framework
called the Dirichlet process active region [26].

In the context of HRI within the manufacturing domain,
there is a need for accurate motion predictions over both short
and long time horizons. While the above methods work well
in their respective domains, they are not necessarily suitable
for prediction across the entire time horizon spectrum. Results
from prior work indicate that utilizing a set of complimentary
prediction approaches for different time horizons results in
improved prediction accuracy [6].

C. Path Planning between Humans
For collaborative robots, the need for human-aware task and

motion planning has become evident [27]. Sisbot et al. pro-

vided one of the first human-aware motion planners for robot
navigation by explicitly accounting for human preferences
[28]; however, their planner does not utilize any predictive
information regarding humans. Recently, several factors have
been incorporated for human-aware planning, including gaze
[29], legibility [30], and proxemics [31], [32].

Predictions of human motion have also been previously used
for robot planning. Ziebart et al. shaped a robot’s navigation
cost according to predictions in order to mitigate potential
collision points, and used time-independent path planners to
compute collision-free paths [24]. In contrast, we explore
planners that utilize explicit representation of time.

While our robotic system is not expected to operate in
crowded regions, techniques of note for navigation within
crowds have been developed [33], [34]. By leveraging the
cooperative effect of robot motion on human motion, Trautman
et al. avoid highly conservative robot behavior caused due to
prediction uncertainty in dense environments [35].

Timing is a critical component for HRI [36], [37], and is of
particular importance for planning and executing the motion
of our system, due to its single-axis mobility. However, the
computational burden of path planning with explicit modeling
of time becomes prohibitively large [24] – even more so for
long time horizons encountered while planning paths in factory
environments. Recently, two approaches for efficient path
planning with explicit modeling of time have been explored.
In their work, Khambhaita et al. first generated the global plan
of the robot’s motion without considering human motion, and
then modified the execution of this path using timed elastic
bands [38]. However, this approach does not provide any
guarantees with regard to path optimality.

An alternate approach that does provide such guarantees
is to pose planning in time as a graph search problem
[39]. In their work, Phillips et al. [7] provided SIPP, a
computationally attractive approach for this problem while
maintaining the optimality of the resulting plan. Evaluation of
SIPP assumed perfect prediction of the environment, and thus
involved execution of a single plan generated prior to motion
execution. However, in practice, predictions change during
execution, requiring approaches for both online replanning and
the interleaving of execution with planning. As discussed in
Section VI, we use and develop upon SIPP to provide these
elements for our robotic system.

IV. SYSTEM OVERVIEW

In this section, we briefly summarize the various compo-
nents of our human-aware robotic system (see Figure 3).

1) Physical Robot: A UR10 collaborative robot serves as
the robotic arm for performing manipulation tasks. Desired
system mobility is achieved by mounting the arm on a linear
axis unit. Arm joint angles are controlled using Universal
Robot on-board controllers, and the arm is held in a fixed
configuration while in motion due to the linear axis unit.

2) Safety System: A 2-D laser scanner is mounted on the
robot; the scanner triggers a safety stop when any human (or
object) is within the safety radius of the robot. A threaded
implementation is used for the safety system. Once the stop
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Fig. 3: An overview of the human-aware robotic system.

is triggered, the entire physical robotic system is rendered
immobile until the human leaves the safety radius.

3) Human Motion Prediction: Humans within the shared
region are tracked using a Kinect sensor and the OpenNI
tracker within Robot Operating System (ROS) [40]. The pre-
diction sub-system uses human detection and the algorithms
described in Section V to provide predictions of human
motion, updated at a frequency of 5 Hz. The 2D coordinates
of the human’s head serve as features for the predictors.

4) Trajectory Planning and Execution: Once a goal loca-
tion is issued, the system described in Section VI generates
a plan for CobotSAM’s base and executes the robot motion.
The system checks for changes in predictions and replans at
a frequency of 10 Hz.

5) Communication between Sub-Systems: Communication
between the physical robot components (UR10, linear axis
unit and the sensors) and the software is implemented using
a programmable logic controller, TCP/IP sockets and ROS. A
task plan executive issues a predetermined sequence of goals,
based on the task plan, to initiate the robot task.

V. HUMAN MOTION PREDICTION

1) Challenges: One of the main challenges of predicting
human motion in the context of collaboration with a mobile
robot within a factory setting is that accurate predictions are
necessary over both short and long time horizons. Short-term
predictions are critical for effective collision avoidance, as
the robot must have accurate knowledge of where a person
will be in the immediate future in order to stop or execute
an evasive motion. While a safety system can serve as a
fallback to prevent collisions, it is not a sufficient solution
for ensuring that interaction feels safe and comfortable for
human workers [5] – an essential requirement for human-robot
interaction [41]–[43]. As efficiency is also imperative within
the manufacturing domain, there is also a need for accurate
long-term predictions. These predictions, when combined with
planning in time, allow the robot to make intelligent decisions
about how to move toward its own goal in a manner that
minimizes interference with humans.

In the scenario considered, the humans whose motions the
system is trying to predict are associates passing through the
shared space who are not actively involved in the robot’s task.

As such, from the robot’s perspective, the motions executed
in the work cell occur in a random order, meaning that human
task sequence information cannot be leveraged for prediction.

2) Multiple-Predictor System: In order to accommodate the
need for accurate human motion prediction in both the short
and long term, we utilize the Multiple-Predictor System (MPS)
[6]. This method uses given motion data to learn how to best
combine a set of complementary prediction methods based on
their relative performances at various time horizons of interest.
One benefit of this data-driven approach is that it is designed to
generalize to different types of tasks and motions. While in [6]
the MPS was evaluated on short reaching motions (1.88±0.48
s) with a prediction time horizon range of 0.05-0.5 s, in this
work we demonstrate and evaluate its use for long, ambulatory
motions (16.05±2.41 s) with a prediction time horizon ranging
from 0.1-6.0 s.

The implemented version of the MPS is composed of three
prediction methods. The first method, velocity-based position
projection (VBPP), estimates future locations by projecting
the human’s current position through an estimate of his or
her velocity as computed via the Savitzky-Golay Filter [44].
Once the velocity is estimated, the VBPP assumes that the
person will continue moving at that speed for the duration
of the time horizon of interest. The second predictor is the
time series classification (TSC) method, which builds upon
the goal-based time series classification approach presented
by Pérez-D’Arpino and Shah [20]. The final predictor in the
MPS is a sequence prediction (SP) method that reasons on
observed sequences of actions instead of the motion itself.
The sequence prediction method uses previously observed
action sequences to learn which sets of actions occur before
others [45]. As described in [6], for both the TSC and SP
methods, the original approaches were extended to predict a
human’s future positions by identifying a point on the mean
trajectory of the predicted action that corresponds with the
current location of the human, and advancing forward by the
queried time horizon.

The MPS is trained via a two-stage process. First, a subset
of the data is used to train the parameters of the individual
prediction methods as a function of a discrete set of prediction
time horizons. Next, a second subset of the data is utilized in
a predictor fusion technique based on the Polynomial Weights
algorithm [46], where the loss function for each predictor i is
defined as the magnitude of the prediction error normalized by
the sum of the mean and standard deviation of the prediction
errors encountered during training, with an upper limit of 1:
Li

t = min
{
‖x̂xxi−xxx‖
µ+σ

,1
}

.

VI. TRAJECTORY PLANNING AND EXECUTION

1) Challenges: Given a robot goal, one approach for robot
motion is to execute pre-programmed paths and maintain
safety through reactive systems [47]; this is the method
used for repetitive robot motion within many factories today.
However, as shown in Sec. VII, such a system yields poor task
efficiency and fluency of interaction in the absence of a means
to anticipate and adapt to human behavior.

Our system, thus, leverages human motion predictions to
generate robot motions. Planning with predictions, however,
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Algorithm 1 Interleaving Planning and Execution
1: procedure MAIN(Rgoal)
2: Hpredictions← MPS() . Get predictions
3: Rstart← Rposition . Get robot start state
4: Rtrajectory← SIPP(Rstart,Rgoal,Hpredictions) . Plan robot trajectory
5: while Goal not reached do . Executed at replanning rate
6: if Safety stop triggered then
7: return False
8: Update robot command (Rcommand) using Rtrajectory
9: Issue Rcommand to hardware controller

10: Hpredictions← MPS() . Update predictions
11: replan ← Predictions changed or Rtrajectory is empty
12: if replan then
13: Rstart← Rcommand . Update start state
14: Rnew-trajectory← SIPP(Rstart,Rgoal,Hpredictions) . Replan
15: if PLANCHANGED (Rtrajectory,Rnew-trajectory) then
16: Rtrajectory← Rnew-trajectory
17: Issue stop Rcommand to hardware controller
18: return True

can be computationally expensive. State-of-the-art human-
aware collaborative manipulation systems typically utilize
short-term predictions [48]; however, predictions involving
significantly longer time horizons may be useful for planning
long robot paths (≈ 10m) in a factory setting. Further, due to its
single-axis mobility, our robotic system has limited freedom
to adapt to the behavior of nearby humans. If the planning
time is lengthy and the robot reacts to human too late, it
might be unable to exhibit anticipatory behavior despite the
existence of predictions that include the desired anticipatory
information. This emphasizes the need for computationally
tractable approaches that account for the critical effect of
timing for path planning, and allow for interleaving online
planning with execution.

2) Safe-Interval Path Planning: To account for the time-
critical nature of the robot planning problem, we use a rep-
resentation that explicitly models time. We incorporate SIPP
as the underlying planner for our system [7]. By using safe
time-intervals, SIPP significantly reduces the cardinality of the
state space and provides a computationally efficient approach
for planning despite explicit modeling of time. Using time-
indexed predictions of human motion, SIPP provides a feasible
robot trajectory if one exists, and returns a failure otherwise.
Given accurate predictions, SIPP is both complete and time-
optimal. We implement the planner as an extension to the
Search-Based Planning Library [49] and ROS.

3) Interleaving Planning and Execution: Due to changing
human motion predictions, SIPP alone is not sufficient for
executing robot motion. SIPP assumes the predictions to be
accurate, and thus does not include a mechanism for updating
the robot plan online. To incorporate the latest predictions, our
robotic system additionally requires online replanning, during
which the robot itself may be in motion. It is undesirable to
stop the robot during replanning; therefore, an approach to
interleave replanning and execution is required.

We provide Algorithm 1 in order to achieve interleaved
planning and execution. Upon receiving the goal location as
input, Algorithm 1 uses the current predictions from the MPS,
and the start state of the robot, to compute the robot’s trajec-
tory via SIPP (lines 1-4). To interleave trajectory execution and
planning, motion commands are executed using the planned
trajectory, which is updated at the replanning rate (lines 5-17).

The algorithm returns a failure if a safety stop is triggered
during execution (lines 6-7); to complete the goal once the
stop is deactivated, the goal is reissued in order to reinitiate
Algorithm 1.

As long as the goal is not reached and a safety stop is
not triggered, motion commands are sent to the hardware
controller according to the latest planned trajectory (lines
8-9). If SIPP could not identify a feasible solution a stop
command is issued to the robot. The robot then updates
its safe time-interval representation according to the latest
available predictions (line 10). If the predictions change, or
if the previous planner call returned a failure, replanning is
performed (line 12-17). To account for change to the robot
state (due to motion) between when the planner is called and
the resulting plan is executed, the latest commanded pose of
the robot is used as the start state for replanning with SIPP.

Human motion predictions continue to evolve over the
course of task execution; however, not all changes to predic-
tions result in plan changes. The new plan, generated in line
14, is thus compared against the plan currently being executed
via the PLANCHANGED() method. The method returns success
if either the trajectory lengths differ by a time threshold
(1s) or the L∞-norm of the difference in the two trajectories
exceeds a distance threshold (0.5m), and prevents fluctuations
in robot trajectory due to minor updates to predictions. If
PLANCHANGED() returns success, the robot is stopped and
the updated trajectory is used for execution from the following
timestep. The algorithm returns success once the goal has been
reached (line 17). By interleaving planning in time and motion
execution, our system can adapt quickly and efficiently to the
behavior of nearby humans.

VII. SYSTEM EVALUATION

A. Physical System Demonstrations
We demonstrated our system using the physical robots

described in Section IV within the environment depicted in
Fig. 1 in a BMW test environment. In our demonstrations, the
robot operated in one of three modes. In all modes, the current
task and goal of the human was unknown to the robot. In the
“Baseline” mode, no information about the human’s current or
predicted position is given to the planner, and the robot simply
pauses its motion whenever a human enters the shared area of
the work cell. This mode emulates the behavior of state-of-the-
art reactive safety systems designed for factory environments,
such as SafetyEye [47]. In the “Planning with Detection”
mode, the planner incorporates the human’s current position
by assuming that the human will remain in that location
until a new position is received. Finally, in our approach
(the “Planning with Prediction” mode), the robot uses both
the currently detected human location and a set of position
predictions obtained from the MPS. These predictions are
made at a discrete set of time horizons ranging from 0.1-
3 s in increments of 0.1 s, and are recomputed at a rate of
5 Hz. Video attachments representing the operation of these
three modes are included with the paper and also available at
http://tiny.cc/cobotSAM (see Fig. 4 for illustrative snapshots).

Through the results from our integrated system demon-
strations, we observed that our system can anticipate and
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(a) Start configuration. (b) Baseline mode. (c) Planning with detection. (d) Planning with prediction.

Fig. 4: Stills of the three modes (b-d) from the factory test environment demonstration. The robot’s task is to navigate to the
other side of the linear axis, while a human attempts to go to the depot. The black line parallel to the rail denotes the boundary
of the shared region. The difference in the robot’s position on the linear axis (yellow arrow) at the start (a) and between the
three modes (b-d) when the human arrives at the depot illustrates the anticipatory behavior of our approach (d).

adapt to the behavior of nearby humans when utilizing both
prediction and planning techniques. In one example of an
observed adaptive behavior, the robot paused its motion and
even moved backwards (Fig. 4(d)) to allow a human to
reach the depot, then automatically resumed its task after the
person moved back toward the workbench. Importantly, this
behavior was automatically derived during execution, without
the need for preprogramming. In contrast, when planning
without anticipation of human motion, the robot was unable
to effectively adapt its motion to unexpected human behavior,
resulting in less fluent interaction, with the robot blocking the
human’s path and triggering safety stop more frequently (Fig.
4(c)). Lastly, while in the Baseline mode, the system yielded
safe but inefficient robot motion (Fig. 4(b)), as the robot often
stopped unnecessarily, sometimes in a position that interfered
with the human’s path.

B. Evaluation in Simulation

While the physical demonstrations provide intuitive, quali-
tative examples of the benefits of our system, the context for
these demonstrations consisted of one robot assisting a single
worker in a small work cell, which is not representative of
how a robotic assistant would be deployed in a real factory.
Therefore, we also performed a more thorough, quantitative
analysis of the benefits of our system in simulation, with a
much larger work cell in an analogue factory environment, as
depicted in Fig. 2.

In the simulation, the length of the rail was 10 m and the
shared workspace was 10 m by 3.1 m. The robot performed a
pre-set sequence of tasks, simulating the pickup and delivery
of components between depots and workbenches. The robot
utilized the planning approach described in Section VI to plan
its motions toward the task plan’s goal locations. We used a
grid size of 10 cm and a replanning rate of 10 Hz for the
planner, and set the maximum speed of the robot to 1 m/s.
We simulated the laser scanner safety system by stopping the
robot whenever a human came within a safety radius of 0.75
m. The simulated robot operated in the same three modes
as those used during the physical demonstrations: Baseline,
Planning with Detection, and Planning with Prediction. Due
to the larger workspace and longer trajectories, the discrete
set of time horizons at which the MPS made predictions was

extended to a range of 0.1-6 s in increments of 0.1 s, with the
same prediction recomputation rate as before (5 Hz).

In order to make the simulated human motions and predic-
tions more realistic, we collected human walking trajectories
via a motion capture system. We defined a set of four possible
human actions corresponding to the four trajectories depicted
in Fig. 2. The “pause” symbols in the figure represent places
where the human would pause for ≈ 3 seconds before con-
tinuing along their trajectory, which is intended to simulate a
worker stopping in order to perform a task (e.g., picking up
a tool or reading a value from a monitor). Two participants
performed each of the four motions 10 times each, while the
2D position and orientation of their head was recorded at a
rate of 120 Hz. The trajectories were then downsampled to
10 Hz and used for training and evaluation of the MPS, with
50% of the trajectories serving to train the individual predictor
parameters, 20% for the predictor fusion, and 30% for use in
the simulation.

We ran a total of 30 trials in each of the three robot
modes, with a different sequence of simulated human actions
occurring in each trial. Each sequence consisted of a random
permutation of eight actions, with each of the four actions
occurring twice. The motion of the human while performing
each action in the sequence was simulated by playing back
a sample trajectory of that action chosen at random from the
holdout set. To further improve the realism of our simulation
and model variability in human motion, we also incorporated a
waiting behavior for the simulated human whenever the robot
was in its path. Specifically, when the human was within the
robot’s safety radius and the human’s approach angle towards
the robot was less than 30°, the simulated human would pause
for a period between 4 and 5 seconds sampled from a uniform
distribution, and then resume motion at 50% of the original
speed until clear of the robot. This slower resumption of
motion is intended to simulate a human carefully moving past
the robot after the initial stop.

C. Simulation Results and Discussion

1) Multiple-Predictor System: We assessed the perfor-
mance of the individual predictors and the MPS with a
leave-one-out cross-validation. For each iteration of the cross-
validation, we held out one set of demonstrations for testing
(one example of each action), 13 for training, and 6 for
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Fig. 5: Simulation outcomes (mean and std. error) for human
idle times and safety stop times (the time during which the
robot was idle due to a safety stop) across the three modes.

model selection. The overall mean prediction errors across all
time horizons and iterations for the velocity-based position
projection (VBPP), time series classification (TSC), sequence
prediction (SP), and MPS were 181.9 cm, 43.0 cm, 174.3 cm,
and 41.2 cm, respectively. We applied the Friedman test to
verify that the prediction method had a significant effect on
these prediction errors (p < 0.001, χ2 = 50.22) and then used
the Wilcoxon signed rank test to perform pairwise comparisons
to the MPS. Given the above averages, the MPS outperformed
the VBPP and SP methods by a large margin, and exhibited a
small improvement over the TSC method (VBPP and SP: p <
0.001; TSC: p = 0.015). As expected, due to the randomness of
the human motion sequences, the sequence prediction method
performed poorly across all time horizons. Consequently, the
MPS was composed of only the other two methods, with
the intuitive assignment of the VBPP method for short time
horizons (0.1-0.6 s) and TSC method for the remaining time
horizons (0.7-6 s).

2) Safety, Efficiency, and Fluency: Using the simulation,
we examined various objective measures of human safety, task
efficiency, and fluency of interaction. To assess the statistical
significance of our results, we applied the Friedman test
to determine the effect of the given robot mode (Baseline,
Planning with Detection, or Planning with Prediction) on these
measures, and the Wilcoxon signed rank test to assess pairwise
comparisons. Results from these evaluations are summarized
in Fig. 5 and Table I.

One key measure of human safety in our evaluation is the
number of times the robot’s safety stop was triggered – i.e.,
the inability of the robotic system to anticipate and avoid the
movement of nearby humans. We observed that as compared to
both the Baseline and Planning with Detection modes, which
resulted in an average of 3.5 and 5.1 safety stop triggers,
respectively, our system resulted in fewer safety stops (mean
0.5). This effect is statistically significant, and is also evident
through the correlated measure of safety stop time depicted in
Fig. 5. When compared with the Baseline mode, our system
also statistically significantly shortened both idle and task
times for both the human and the robot, with human and
robot idle times reduced by 81.8% and 44.1%, respectively,
and task times reduced by 5.8% and 16.9%, respectively. This
demonstrates that not only did the incorporation of prediction
and planning result in fewer safety stop triggers, but also
improved task efficiency.

TABLE I: Simulation Resultsa

Dependent
Variable

Baseline Planning +
Detection

Planning +
Prediction

Friedman
Test

Safety Stop
Triggers (#)

3.5
p < 0.001

5.1
p < 0.001

0.5 χ2 = 50.04
p < 0.001

Human Idle
Time (s)

11.7
p < 0.001

12.6
p < 0.001

2.13 χ2 = 28.92
p < 0.001

Robot Idle
Time (s)

91.7
p < 0.001

46.4
p = 0.086

51.3 χ2 = 46.07
p < 0.001

Human Task
Time (s)

165.2
p < 0.001

168.1
p < 0.001

155.7 χ2 = 27.27
p < 0.001

Robot Task
Time (s)

204.0
p < 0.001

159.6
p = 0.002

169.5 χ2 = 51.67
p < 0.001

Safety Stop
Time (s)

18.1
p < 0.001

21.0
p < 0.001

2.85 χ2 = 37.49
p < 0.001

a Mean values of the dependent variables. The p values in the Baseline
and Planning + Detection columns correspond with the pairwise comparisons
between these modes and Planning + Prediction mode.

Compared with the Planning with Detection mode, our
system also statistically significantly reduced human idle and
task times by 83.1% and 7.4%, respectively. Interestingly, the
Planning with Detection mode resulted in robot idle and task
times comparable to our own approach. The total robot idle
time is composed of the sum of time the robot stopped due to
the safety system being engaged (specified as “Safety Stop
Time” in Table I) and the time during which the planner
commanded the robot to pause. On further inspection, we
observed that the robot idle time due to safety stops is insignif-
icant for our system as compared with that observed while
the robot operated under the Planning with Detection mode.
Indeed, this unplanned idle time contributed to only 5.56%
of total robot idle time when using predictions, whereas its
contribution increased to 45.33% when using only detections.
This indicates that, although the robot remains idle using our
approach for a similar amount of time as that observed in the
Planning with Detection mode, this behavior was due to the
planner commanding the robot to pause in order to yield to
the human, improving safety and reducing human idle time.

3) Interleaving Prediction, Planning and Execution: We
conducted an additional 30 simulation trials in which the
robot planned its motion using SIPP but without interleaving
planning and execution (similar to how SIPP was employed
in [7]). The robot created a plan using SIPP and available
predictions at the outset of its motion execution and executed
it till either the goal was reached or safety stop was triggered.
As compared to Planning with Prediction, this “SIPP-baseline”
mode resulted in higher numbers of safety stops (5.5, p <
0.001) and cumulative duration (19.48 s, p < 0.001), higher
human idle time (10.8 s, p < 0.001) and task time (173.0 s, p
< 0.001), and a higher ratio of unplanned idle time (42.5%).

D. Future Directions

Our evaluations demonstrated safe and efficient performance
of the CobotSAM system, and raise a number of directions
for future research. For instance, the prediction sub-system
assumed that all human actions come from a known set and
was not designed to handle previously unseen motions. While
the constrained nature of the factory domain lent itself well to
this assumption, anomalous motions can still occur. To address
this issue, we plan to incorporate the ability to recognize
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unmodeled motion and adjust the composition of the MPS
online in future work. Further, the robot’s trajectory planner
replanned from scratch once new predictive information was
made available. Hence, we are investigating the development
of incremental planners for planning in time that can replan
efficiently by reusing their previous planning process.

VIII. CONCLUSION

We present CobotSAM, a human-aware robotic assistant
designed to deliver parts to human associates performing
dexterous assembly tasks. The robot is equipped with algo-
rithms for prediction of the motion of nearby humans, along
with a planning algorithm that leverages these predictions by
planning in time. We demonstrate the efficacy of our system in
a BMW test environment. Through the use of these algorithms,
our system exhibits anticipatory behavior and results in safe
and efficient execution of a part-delivery task while sharing
its environment with humans in the factory.
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